Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление подготовки / специальность: Прикладная математика и информатика **Профиль / специализация:** Математическое моделирование и вычислительная математика

Дисциплина: Математический анализ

Формируемые компетенции: ОПК-1

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект оценки	Уровни сформированности компетенций	Критерий оценивания результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания Экзамен или зачет с оценкой
Низкий уровень	Обучающийся:	Неудовлетворительно
Пороговый уровень	Обучающийся:	Удовлетворительно
Повышенный уровень	Обучающийся:	Хорошо

Высокий уровень	Обучающийся:	Отлично
--------------------	--------------	---------

Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

Планируемый	Содержание шкалы оценивания достигнутого уровня результата обучения			
уровень результатов освоения	Неудовлетворительно Не зачтено	Удовлетворительно Зачтено	Хорошо Зачтено	Отлично Зачтено
Знать	чающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом		монстрирует спо- собность к само- стоятельному при- менению знаний при решении заданий, аналогичных тем, которые представ-	Обучающийся демонстрирует способность к самостоятельному применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части междисциплинарных связей.
Уметь	щегося самостоятельности в применении умений по использованию методов освое-	стрирует самостоя- тельность в примене- нии умений решения учебных заданий в полном соответствии с образцом,	демонстрирует са- мостоятельное при- менение умений решения заданий, аналогичных тем, которые представ-	_
Владеть	стоятельно проявить навык решения по- ставленной задачи по	тельность в применении навыка по заданиям, решение которых	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял	_

Примерный перечень вопросов к экзамену.

Компетенция ОПК-1:

- 1. Свойства вещественных (действительных) чисел.
- 2. Числовые множества специального вида.
- 3. Ограниченные и неограниченные множества. Верхняя и нижняя грани множества.
- 4. Числовые последовательности. Их свойства.
- 5. Предел последовательности. Бесконечно малые и бесконечно большие последовательности и их свойства.
- 6. Монотонные последовательности. Число е.
- 7. Теорема Больцано-Вейерштрасса. Частичный предел.
- 8. Предельные точки последовательности. Верхний и нижний пределы последовательности.
- 9. Критерий Коши сходимости последовательности.
- 10. Понятие функции. Свойства функций. Обратная и сложная функции.
- 11. Основные элементарные функции.
- 12. Предел функции, его свойства.
- 13. Бесконечно малые и бесконечно большие функции и их свойства.
- 14. Первый замечательный предел и следствия из него.
- 15. Второй замечательный предел.
- 16. Классификация бесконечно малых. Вывод основных эквивалентностей.
- 17. Понятие непрерывности функции в точке.
- 18. Односторонняя непрерывность. Классификация разрывов.
- 19. Свойства функций, непрерывных на отрезке.
- 20. Равномерная непрерывность.
- 21. Эквивалентность различных определений предела функции в точке.
- 22. Производная. Ее геометрическая и физическая интерпретация.
- 23. Понятие дифференцируемости функции, ее связь с производной. Дифференциал функции.
- 24. Правила вычисления производных, связанные с арифметическими действиями над функциями.
- 25. Производная сложной и обратной функции.
- 26. Производные основных элементарных функций: y = c, y = x, $y = x^n$, $y = a^x$, $y = \ln x$.
- 27. Производные основных элементарных функций: $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \arcsin x$, $y = \operatorname{arctg} x$.
- 28. Дифференцирование функции, заданной параметрически.
- 29. Теоремы о среднем для дифференцируемых функций (теорема Ферма, теорема Ролля).
- 30. Теоремы о среднем для дифференцируемых функций (теорема Лагранжа, теорема Коши).
- 31. Критерий монотонности функции. Экстремумы функций. Необходимое и достаточное условия экстремума
- 32. Выпуклость функции. Точки перегиба. Необходимое и достаточное условия точек перегиба.
- 33. Асимптоты. Правила их отыскания.
- 34. Первообразная. Свойства неопределенного интеграла.
- 35. Основные методы интегрирования (интегрирование заменой переменного и по частям).
- 36. Разложение правильных рациональных дробей на сумму простейших дробей.
- 37. Интегрирование элементарных рациональных дробей

$$\int \frac{A}{x \pm a} dx, \int \frac{A}{(x \pm a)^n} dx, \int \frac{Mx + N}{x^2 + px + q} dx.$$

- 38. Интегрирование тригонометрических функций.
- 39. Интегрирование иррациональностей

$$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx, \int R\left(x, \left(f(x)\right)^{\frac{p_1}{q_1}}, ..., \left(f(x)\right)^{\frac{p_n}{q_n}}\right) dx.$$

- 40. Интегрирование биномиальных дифференциалов.
- 41. Задача о площади криволинейной трапеции.
- 42. Определение определенного интеграла и его свойства.
- 43. Верхняя и нижняя интегральные суммы Дарбу.
- 44. Свойства определенного интеграла.
- 45. Определенный интеграл как функция от его верхнего предела интегрирования. Производная интеграла.
- 46. Формула Ньтона-Лейбница.
- 47. Формулы замены переменной и интегрирования по частям в определенном интеграле.

- 48. Приложения определенного интеграла (площадь области в декартовых и полярных координатах).
- 49. Приложения определенного интеграла (вычисление длины дуги кривой).
- 50. Приложения определенного интеграла (вычисление объема тела по известным площадям поперечных сечений, вычисление объема тела вращения).
- 51. Интегралы с бесконечными пределами. Критерий Коши и достаточные условия сходимости несобственных интегралов.
- 52. Абсолютная и условная сходимость несобственных интегралов. Признаки Абеля и Дирихле.
- 53. Интегралы от неограниченных функций.
- 54. п-мерное евклидово пространство. Понятие функции нескольких переменных.
- 55. Предел и непрерывность функции нескольких переменных.
- 56. ФНП. Частные производные ФНП.
- 57. Дифференцируемость и полный дифференциал функции двух переменных.
- 58. Производная сложной функции. Полная производная.
- 59. Экстремум функции двух переменных.
- 60. Задача об объеме цилиндрического тела. Определение и свойства двойного интеграла.
- 61. Сведение двойного интеграла к повторному.
- 62. Замена переменных в двойном интеграле.
- 63. Понятие тройного интеграла и способ его вычисления.
- 64. Замена переменных в тройных интегралах. Цилиндрические координаты. Сферические координаты.
- 65. Определения криволинейных интегралов первого и второго рода, их свойства.
- 66. Сведение криволинейных интегралов к определенным интегралам.
- 67. Формула Грина.
- 68. Криволинейные интегралы, не зависящие от пути интегрирования.
- 69. Поверхностный интеграл І рода и его основные свойства.
- 70. Поверхностный интеграл I I рода и его основные свойства.
- 71. Формула Гаусса-Остроградского.
- 72. Скалярное поле. Поверхности уровня и линии уровня скалярного поля. Векторные линии векторного поля.
- 73. Производная по направлению. Градиент скалярного поля.
- 74. Поток векторного поля через поверхность. Теорема Гаусса-Остроградского.
- 75. Дивергенция векторного поля.
- 76. Циркуляция векторного поля.
- 77. Ротор ноля. Теорема Стокса.
- 78. Потенциальные и соленоидальные поля.
- 79. Оператор Гамильтона.
- 80. Определение числового ряда и его сходимости. Исследование на сходимость геометрической прогрессии.
- 81. Необходимый признак сходимости ряда.
- 82. Свойства сходящихся рядов.
- 83. Критерии сходимости положительных рядов. Интегральный признак Коши. Исследование ряда $\sum_{n=1}^{\infty} \frac{1}{n}$.
- 84. Критерии сходимости положительных рядов. Признаки сравнения.
- 85. Критерии сходимости положительных рядов. Признак Даламбера.
- 86. Критерии сходимости положительных рядов. Радикальный признак Коши.
- 87. Знакочередующиеся ряды. Признак сходимости Лейбница.
- 88. Знакопеременные ряды. Абсолютная и условная сходимость.
- 89. Сходимость и равномерная сходимость функциональных последовательностей и рядов.
- 90. Критерии равномерной сходимости функциональных последовательностей и рядов.
- 91. Понятие степенного ряда. Радиус и интервал сходимости степенного ряда.
- 92. Единственность разложения функции в степенной ряд.
- 93. Определение ряда Тейлора. Условие разложения функции в ряд Тейлора.
- 94. Разложении функций $y = \sin x$ и $y = \cos x$ в степенной ряд. Оценка остаточного члена.
- 95. Разложении функции $y = e^x$ в степенной ряд. Оценка остаточного члена.
- 96. Разложении функции $y = \ln(1+x)$ в степенной ряд. Оценка остаточного члена.
- 97. Разложении функции $y = (1+x)^{\alpha}$ в степенной ряд. Оценка остаточного члена.
- 98. Ряды Фурье.

Образец экзаменационного билета

Дальневосточный государственный университет путей сообщения Экзаменационный билет № по дисциплине «Утверждаю» Кафедра (к902) Математический анализ Зав. кафедрой Высшая математидля направления подготовки / специальности Виноградова П.В., ка 01.03.02 Прикладная математика и информатика д-р физ.- мат. наук, до-1семестр, профиль/специализация цент учебный год 01.03.02 Математическое моделирование и вычислительная мате-__» ____ 20 __ г. матика

- 1. Производные основных элементарных функций ($y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \arcsin x$, $y = \operatorname{arctg} x$.) (ОПК-1)
- 2. Вычислить производную функции $y = e^{x^2} \cdot \ln 5x$. (ОПК-1)
- 3. Вычислить интеграл $\int \frac{e^x}{1+e^{2x}} dx$. (ОПК-1)
- 4. Найти промежутки выпуклости, вогнутости и точки перегиба функции $y = \frac{2x-1}{(x-1)^2}$. (ОПК-1)
- 5. Предельные точки последовательности. Верхний и нижний пределы последовательности. (ОПК-1)

Образец экзаменационного билета

	Дальневосточный государственный университет путей сообщен	ия	
Кафедра (к902) Высшая математика ка 2семестр, учебный год О1.03.02 Математическое моделирование и вычислителы		«Утверждаю» Зав. кафедрой Виноградова П.В., д-р физ мат. наук, доцент «» 20 г.	
(ОПК-1)	на сходимость: $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n^3+4n-1}\right)^n$. (ОПК-1)	ической прогрессии.	
3. Вычислить интег	рал $\iint_D dx dy$, где $D: y = 2\sqrt{x}, x + y = 8, x = 0.$ (ОПК-1)		
4. Найти площадь фигуры, ограниченной линиями $r=a(1+\cos\phi),\ r=a\cos\phi,\ a>0.$ (ОПК-1)			
5. Разложении функции $y = \ln(1+x)$ в степенной ряд. Оценка остаточного члена. (ОПК-1)			

3. Тестовые задания. Оценка по результатам тестирования.

Примерные задания теста

Задание 1. (ОПК-1)

Укажите все свойства последовательностей.

- ☑ Бесконечно малая последовательность ограничена.
- $\ oxdot$ Если $\{a_n\}$ бесконечно большая последовательность, то $\left\{\dfrac{1}{a_n}\right\}$ бесконечно малая последовательность.
- oxdot Если $\{a_n\}$ бесконечно малая последовательность, то $\left\{\dfrac{1}{a_n}\right\}$ бесконечно большая последовательность.
- ☑ Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.
- □ Произведение бесконечно малой последовательности на бесконечно большую последовательность есть бесконечно большая последовательность.
- oxdot Если $\{a_n\}$ постоянная и бесконечно малая последовательность, то $a_n=0$.

Задание 2. (ОПК-1)

Укажите соответствующую формулу общего члена последовательности, если перечислены первые три члена данной последовательности.

$$-3, 12, -33, ...$$

$$a_{n} = (-1)^{n} (n^{3} + 2n)$$

$$a_{n} = \frac{n^{2}}{n^{2} + 10}$$

$$0, \frac{1}{2}, 0, ...$$

$$a_{n} = \frac{(-1)^{n} + 1}{n^{2}}$$

$$-2, -5, 10, ...$$

$$a_{n} = (-1)^{\frac{n(n+1)}{2}} \cdot (n^{2} + 1)$$

$$\frac{1}{11}, \frac{1}{21}, \frac{1}{31}, ...$$

$$2, \frac{8}{3}, \frac{48}{15}, ...$$

Задание 3. (ОПК-1)

Укажите все способы задания функций.

- ☑ графический
- ☑ аналитический
- ☑ табличный
- ☑ устный
- □ геометрический

Задание 4. (ОПК-1)

Найдите область определения функции $y = \sqrt{9 - x^2} + \lg \frac{x+1}{x-2}$.

$$\Box (-\infty; -3] \cup [3; +\infty)$$

$$\Box (-3;-1) \cup (2;3)$$

$$\Box [-3;-1) \cup [2;3]$$

Задание 5. (ОПК-1)

Вычислите пределы.

$$\lim_{x \to 2} \frac{x^3 - 3x - 2}{x^3 - 8}$$

$$\lim_{x \to \infty} \frac{\sqrt[4]{x^2 + 5} - \sqrt[3]{x^2 + 1}}{\sqrt[5]{x^4 + 2} - \sqrt{x^3 + 1}}$$

$$\lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{(n+2)! - (n+1)!}$$

$$\lim_{x \to \infty} \left(\frac{x^3}{x+1} - \frac{3x^2 + x + 2}{x} \right)$$

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 16} - 4}$$

Задание 6. (ОПК-1)

Выберите верный вариант ответа.

Если
$$z = \frac{1-2i}{i^2}$$
, то Re z равна:

- □ -I □ 1
- □ -2
- \square 2

Задание 7. (ОПК-1)

Выберите верный вариант ответа.

Если
$$z = \frac{2i^2}{1-i}$$
, то Im z равна:

- **✓** -1
- \Box 1
- \square 2
- \Box -2

Задание 8. (ОПК-1)

Последовательность действий для проверки существования производной функции комплексного переменного в точке:

- 1: Найти действительную и мнимую части функции
- 2: Найти частные производные действительной и мнимой частей функции
- 3: Записать систему уравнений условие Коши-Римана для данной функции
- 4: Определить, является ли данная точка решением системы

Задание 9. (ОПК-1)

Выберите верный вариант ответа.

Условия Коши-Римана для функции f(z) = u(x, y) + iv(x, y):

$$\Box \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}$$

$$\Box \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$$

$$\Box \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

Задание 10. (ОПК-1)

Вставьте пропущенный термин.

Всякое решение дифференциального уравнения первого порядка, получающееся из общего решения при конкретном значении константы называется решением.

Правильные варианты ответа: частн#\$#; часным;

Задание 11. (ОПК-1)

Выберите верный вариант ответа.

Общий интеграл дифференциального уравнения $4yy'-3x^2=1$ имеет вид:

$$y^2 - \frac{x^3}{3} - \frac{x}{3} + C = 0$$

$$\Box 2y^2 + x^3 + x + C = 0$$

Задание 12. (ОПК-1)

Последовательность действий при интегрировании F(y,y',y'')=0, не содержащего независимой переменной:

- 1: Выберите у в качестве независимой переменной;
- 2: Введите подстановку y' = z = z(y);
- 3: Выразите у^{''} через *z* и *y*;
- 4: Подставьте y' = z и найденное y'' в исходное уравнение;
- 5: Решите дифференциальное уравнение F(y,z,zz') = 0;
- 6: Замените в общем решении $\ z = \varphi(y, C_1)\$ на y';
- 7:Найдите общее решение дифференциального уравнения с разделяющимися переменными $y' = \varphi(y, C_1)$.

Задание 13. (ОПК-1)

Выберите верный вариант ответа.

Общее решение дифференциального уравнения y''=3sin3x+2 имеет вид:

$$\Box y = -\frac{1}{3}\cos 3x + x^2 + C_1 x + C_2$$

$$\Box y = \frac{1}{3}\sin 3x + \frac{x^2}{2} + C_1 x + C_2$$

$$\Box y = \frac{1}{3}\cos 3x + \frac{x^2}{2} + C_1 x$$

Задние 14. (ОПК-1)

Введите пропущенное число.

Дифференциальное уравнение (k-2) у''+(k+3) у'-4у=(k+1)х⁵ является нородным линейным уравнением первого порядка, если k-число ______.

неод-

Задание 15. (ОПК-1)

Соответствие между признаком сходимости ряда и его формулой:

Необходимый признак сходимости

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n \neq 0$.

Признак Даламбера

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l\,,$$
 To

$$\begin{cases} l < 1, mo \sum_{n=1}^{\infty} a_n cxo \partial um c \mathfrak{R} \\ l > 1, mo \sum_{n=1}^{\infty} a_n pacxo \partial um c \mathfrak{R} \end{cases}$$

Радикальный признак Коши

$$\lim_{n\to\infty} \sqrt[n]{a_n} = l,$$
 To

$$\begin{cases} l < 1, mo \sum_{n=1}^{\infty} a_n cxo dumc n, \\ l > 1, mo \sum_{n=1}^{\infty} a_n pacxo dumc n, \end{cases}$$

Интегральный признак Коши

Ряд
$$\sum_{n=1}^{\infty} a_n$$
 и $\int_{1}^{\infty} f(x) dx$, где $a_n = f(n)$,

ведут себя одинаково.

Достаточный признак расходимости

Если
$$\lim_{n\to\infty} a_n \neq 0$$
, то ряд $\sum_{n=1}^{\infty} a_n$ расходит-

ся.

Задание 16. (ОПК-1)

Соответствие между общим членом ряда и самим рядом:

$$u_n = \frac{n}{2^n}$$

$$1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \dots$$

$$u_{n} = \frac{n+2}{(n+1)^{2}}$$

$$\frac{3}{4} + \frac{4}{9} + \frac{5}{16} + \frac{6}{25} + \dots$$

$$u_{n} = \frac{1}{(3n-1)\cdot(3n+2)}$$

$$\frac{1}{2\cdot 5} + \frac{1}{5\cdot 8} + \frac{1}{8\cdot 11} + \dots$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

Задание 17. (ОПК-1)

Соответствие между рядом и возможностью ответа на вопрос о его сходимости с помощью необходимого признака:

нет $\sum_{n=1}^{\infty} \frac{n^2}{1+e^n}$ да $\sum_{n=1}^{\infty} \left(\frac{n+3}{n+5}\right)^n$ нет $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ да $\sum_{n=1}^{\infty} \frac{n^2+n-1}{n+1}$

Задание 18. (ОПК-1)

Соответствие между названием ряда и его формулой:

Знакочередующийся

 $\sum_{n=1}^{\infty} (-1)^n \frac{2n+3}{n^2+4}$ $\sum_{n=1}^{\infty} \frac{(x-3)^n}{4^n}$ $\sum_{n=1}^{\infty} \frac{1}{n}$

Степенной

Гармонический

Геометрическая прогрессия

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной и рейтинговой системами оценивания знаний, умений, навыков и (или) опыта деятельности, устанавливается посредством следующей таблицы:

Объект оценки	Показатели оценивания результатов обучения	Оценка	Уровень результатов обучения
	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
Openioranning	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
Обучающийся	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета

	Содержание шкалы оценивания			
Элементы оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам	Значительные погрешности	Незначительные погрешности	Полное соответствие
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию	Незначительное несоответствие критерию	Соответствие критерию при ответе на все вопросы.
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место не- существенные упущения и незна- ние отдельных (единичных) работ из числа обяза- тельной литерату- ры.	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать во- просы теории и прак- тики проявляется ред- ко	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер
Качество ответов на дополнительные во- просы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	1. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя.	Даны верные ответы на все дополнительные вопросы преподавателя.

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.